This is the training class “Machine Learning para Seguridad en Redes y Detección de Malware” for the CACIC 2018 Conference.
The live video of the class will be added here soon.
Can a Raspberry Pi 5 run Large Language Models? In this post, we share the results of our experiments, analyzing how LLMs perform on this low-cost hardware and exploring the challenges and performance trade-offs.
The complete automation of cyber-attacks has become one of the areas of greatest interest since the introduction of Large Language Models (LLMs) to the public. The creation of attacking LLM agents that can act independently is among the most popular options.
In this blog, we introduce a brand-new agent: ARACNE. We also share the results of attack tests and what they mean in terms of the agent’s current capabilities.
We are thrilled to announce that, for the first time, the Czech Technical University in Prague is offering the "Introduction to Security" course as a Massive Open Online Course!
This blog covers my ongoing GSoC project 2024. It provides information about the current progress of my work, as well as my experiences and lessons learned along the way.
This is the training class “Machine Learning para Seguridad en Redes y Detección de Malware” for the CACIC 2018 Conference.
The live video of the class will be added here soon.
During DEFCON 26 the AI village hosted a jeopardy style CTF with challenges related to AI/ML and security. I thought it would be fun to create a challenge for that and I had an idea that revolved around Denoising Autoencoders (DA). The challenge was named “Too much noise” but unfortunately it was not solved by anyone during the CTF. In this blog I would like to present the idea behind it and how one could go about and solve it.
Notpink es la primer conferencia con charlas técnicas sobre seguridad dadas sólo por mujeres en Argentina. Tuvo lugar en la Universidad de Palermo el pasado 24 de Agosto. Asistieron unas 200 personas. Las charlas fueron dadas por once mujeres especialistas de diferentes áreas de la seguridad informática, esto reflejó diversos matices del ámbito de la cyberseguridad (bancario, medicina, legal, etc). Los sponsors de esta primer edición fueron ESET, Infobyte y Eleven Paths.
Last week I had the opportunity to attend the 1st Transylvanian Deep Learning Summer School (TMLSS). It took place in Cluj, Romania and its main focus was Deep Learning and Reinforcement Learning. Here is the link to website that includes the programme and the full list of lecturers. (link)
Radhika Gupta is a student studying Computer Science at Carnegie Mellon University in Pittsburgh, Pennsylvania, USA. With the Stratosphere team and thanks to the Women in Tech Fund, she was able to attend Hack in Paris and Nuit Du Hack in Paris, France. Here are five things she learned after attending these conferences!
The first edition of RESET cybersecurity conference took place last week in the Kennedy Lecture Theatre of the UCL in London. Hundreds of attendees gathered together to discuss about cyber attacks, threat actors, threat hunting, defence strategies, and more. The event schedule consisted of 8 technical talks, 2 panels, and opening and closing notes. The speaker selection was excellent, with the presence of well known figures such as Wendy Nather, Kim Zetter, and Rebekah Brown.
The Stratosphere IPS is a behavioral-based intrusion detection and prevention system. It uses machine learning algorithms to detect malicious behaviors. In order to do that, we create models based on real malware behaviours to ensure a good accuracy and performance of our IPS. For this reason, in 2015 we started our sister project called 'Malware Capture Facility Project'.
The goal of the NoMaD project is to collect, label, organize and make available a large, verified and labeled dataset of normal and malicious HTTPS connections. This dataset is designed to support the research team at Cisco Prague as well as to support the research activities and publications of the CVUT University. The project will give Cisco Systems an evolving dataset to generate better and faster analysis; and will give the CTU University the opportunity to research about the HTTPSbehaviors in the network as part of its Stratosphere Project.
Some days ago we finally made public two tools that were very important for starting this project. The tools are CCDetector and BotnetDetectorComparer. With these tools we created the experiments in the paper “An empirical comparison of botnet detection methods”. You can download them and use them to verify the paper and test more ideas. Please contact us if you need assistance.
After considering several request we decided to extend the previous CTU-13 dataset to include truncated versions of the original pcap files. The pcap files include now all the traffic: Normal, Botnet and Background. The pcap files where however truncated to protect the privacy of the users, but in such a way that it is still possible to read the complete TCP, UDP and ICMP headers.
This blog post is a comparison and analysis of the differences in the behavioral patterns found in the DNS traffic of malware and normal connections. We captured malware and normal traffic in the MCFP project and we extracted the DNS behavior with the stf tool. The captures correspond to DNStraffic of a SPAM malware, DGA-based malware and a normal computer. The idea is to analyze the differences in the behaviors as they are shown by the stf program. For an explanation of how the stfprogram is generating this data see this explanation.
Working as security researchers is common to create a new machine learning algorithm that we want to evaluate. It may be that we are trying to detect malware, identify attacks or analyze IDS logs, but at some point we figure it out that we need a good dataset to complete our task. But not any dataset; in fact we need a labeled dataset. The dataset will be used not only to learn the features of, for example, malware traffic, but also to verify how good our algorithm is. Since getting a dataset is difficult and time consuming, the most common solution is to get a third-party dataset; although some researchers with time and resources may create their own. Either way, most usually we obtain a dataset of malware traffic (continuing with the malware traffic detection example) and we assign the label Malware to all of its instances. This looks good, so we make our training and testing, we obtain results and we publish. However, there are important problems in this approach that can jeopardize the results of our algorithm and the verification process. Let’s analyze each problem in turn.
The Stratosphere IPS Project officially started around January 2015 with a huge effort of development and planning. We are glad to see that after these two months we were able to start the project website and social relationships, to boost the collaboration with others and to develop the first part of the project: The Stratosphere Testing Framework.
This is an analysis of the traffic generated by the APK sample 46a2468a6ee9a7740191747d1b7b16a5 that was downloaded from the CopperDroid project. Virus Total detects this sample as a malware called Kaishi (probably related with banks attacks) and although the malware is from May 2014, in Mar 12, 2015 only two Antivirus engines detect it.
This is an install guide to run the Argus Sniffer in the Raspberry PI using Raspbian for use in the Stratosphere Project.